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Abstract 
In this study, effects of porosity and fiber orientation on 
the viscous permeability and Forchheimer coefficient of 
mono-dispersed fibers are investigated. The porous 
material is represented by a unit cell which is assumed to 
be repeated throughout the medium. Based on the 
orientation of the fibers in the space, fibrous media are 
divided into three categories: 1D, 2D, and 3D structures. 
Parallel and transverse flow through square arrangements 
of 1D fibers, simple 2D mats, and 3D simple cubic 
structures are solved numerically over a wide range of 
porosities, 0.35 < ε  < 0.95 and Reynolds numbers 0.01 < 
Re  < 200. The results are used to calculate permeability 
and the inertial coefficient of the solid matrices. An 
experimental study is performed; the flow coefficients of 
three different ordered tube banks in the moderate range 
of Reynolds number, 0.001 < Re < 15, are determined. 
The numerical results are successfully compared with the 
present and the existing experimental data in the 
literature. The results suggest that permeability and 
Forchheimer coefficient are functions of porosity and 
fiber orientation. A comparison of the experimental and 
numerical results with Ergun equation reveals that this 
equation is not suitable for highly porous materials. As 
such, new, accurate correlations are proposed for 
determining the Forchheimer coefficient in fibrous media. 
 
Keywords: Fibrous media; Flow coefficients; 
Inertial regime; Numerical modeling; Experimental;  

1 Introduction 
In-depth understanding of flow through fibrous porous 
materials and determining the resulting pressure drop are 
important in numerous engineering applications such as 
filtration and separation of particles [1], biological 
systems [2], composite fabrication [3], compact heat 
exchangers [4,5], and fuel cell technology [6]. In creeping 
flow regime, according to Darcy equation the relationship 

between volume averaged velocity through porous media, 

DU , and the pressure drop is linear [7]: 

DU
Kdx

dP μ
=−  (1) 

where K is the permeability. In higher Reynolds numbers, 
the relationship becomes parabolic and a modified Darcy 
equation can be used [7]: 

2
DD UU

Kdx
dP βμ

+=−  (2) 

where β  is called the inertial coefficient. For a fibrous 
medium, the flow coefficients are expected to depend on 
the porosity, fibers diameter, fibers distribution in the 
volume, and the orientation of fibers relative to the flow 
direction.  
Based on the orientation of the fibers in space, three 
categories can be considered for fibrous structures: one-
directional (1D) where the axes of fibers are parallel to 
each other; two-directional (2D) where the fibers axes are 
located on planes parallel to each other, with an arbitrary 
distribution and orientation on these planes; and three-
directional (3D), where their axes are randomly 
positioned and oriented in a given volume. With the 
exception of the 3D structures, the rest are not isotropic 
[8].  
A variety of analytical, theoretical, and experimental 
methods have been employed to predict the flow 
properties of fibrous materials. Existing analytical works 
are mostly limited to study of the creeping flow over a 
single cylinder or through periodic fiber arrays [9-16]. In 
addition, few models have been reported that are capable 
of predicting the permeability of 2D and 3D structures 
[1,17-20]; recently, Tamayol and Bahrami [20] have 
reviewed these models. Numerical and experimental 
studies for creeping flow in fibrous media covers a wider 
range of porosity and fiber distribution in 1D [19, 21-22], 
2D [19,23-27], and 3D [28-31] structures. Most of the 
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existing correlations in literature for 2D and 3D are based 
on curve fitting of numerical and experimental data [8].  
Considering the inertial effects in the flow analysis adds 
to the complexity of the problem. As such, no analytical 
solutions were found in the literature for the moderate 
Reynolds number flows through fibrous structures. The 
existing studies are either numerical or experimental. 
Effects of Reynolds number on the pressure drop through 
unidirectional mono-disperse and bimodal fibers were 
investigated numerically by Nagelhout et al. [32], Martin 
et al. [33], Lee and Yang [34], Koch and Lodd [35], 
Edwards et al. [36], Ghaddar [37] and Papathanasiou et al. 
[38]. Their results, in general, confirmed a parabolic 
relationship between pressure drop and flow rate in the 
considered geometries. However, comparison of these 
numerical results with conventional models in the 
literature such as the Ergun equation was not successful 
[38]. 
The studies of moderate Reynolds number flows through 
2D and 3D structures are not frequent. Recently, Rong et 
al. [39] used Lattice Boltzmann method to investigate the 
flow in three dimensional random fiber network with 
porosities in the range of 0.48 < ε  < 0.72. Their results 
were in agreement with Forchheimer equation which is in 
line with the observations of [38]. Boomsma et al. [40] 
have also studied flow in high porosity 3D fibrous 
structures to predict flow properties of open cell 
aluminum foams.  
Our literature review reveals that no comprehensive 
studies exists in the literature on the effect of 
microstructure especially fiber orientation on the flow 
properties of fibrous materials in low to moderate range of 
Reynolds numbers. In addition, very few experimental 
works have been published for the flow through ordered 
fibrous with moderate Reynolds number. In this study, the 
effects of porosity and fiber orientation on the flow 
coefficients of mono-dispersed fibers are investigated. 
Parallel and transverse flow through a variety of fibrous 
matrices including square fiber arrangements, simple two 
directional mats, and simple cubic structures are solved 
numerically over a wide range of porosities, 0.4 < ε  < 
0.95 and Reynolds numbers 0.01 < Re < 200. The results 
are then used to find permeability and the inertial 
coefficient of the solid matrices. To verify the present 
numerical results, pressure drop through three different 
tube banks with porosity range of 0.8 < ε  < 0.9 are tested 
using water-glycerol mixtures to determine the flow 
coefficients. The numerical results are successfully 
compared with the present experimental measurements 
and the data found in the literature.  

The results showed that both permeability and inertial 
coefficient are functions of porosity and fiber orientation. 
However, the dependence on the fibers orientation is more 
pronounced in lower porosities, i.e., ε  < 0.7. Moreover, 
using the present numerical results, new compact 
correlations are proposed for calculating the inertial 
coefficient in the considered structures. 

2 Geometrical modeling 
Following other researchers [17-20, 32-38], the porous 
media is represented by a unit cell which is assumed to be 
repeated throughout the media. The flow properties of 
square arrays of equally-sized, equally-spaced fibers, 
shown in Fig. 1, are studied as a representative of 1D 
structures. The solid volume fraction, ϕ , for the 
arrangement shown in Fig. 1 is related to the distance 
between the centers of adjacent fibers, S, and the fibers 
diameter, d: 

2

2

4S

dπϕ =  (3) 

To model 2D woven textile materials, the geometry 
shown in Fig. 2 is considered. The relationship between 
solid volume fraction ϕ  and other geometrical parameters 
in Fig. 2 can be expressed as: 

S
d

4
πϕ =  (4) 

 
Figure 1: Square fiber arrangement for analysis of 1D 

structures. 

The flow properties of SC structures are investigated as a 
representative structure for 3D materials; see Fig. 3. The 
relationship between the solid volume fraction and 
geometric parameters of SC arrangement is [30]: 
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Figure 2: Considered unit cells for modeling 2D fibrous 
structures. 
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Figure 3: Simple cubic unit cells for modeling 3D 

structures. 

3 Microscopic and macroscopic flow equations 
If the pore sizes are much larger than the molecular mean 
free path, flow in pore scale is governed by Navier-Stokes 
equation; that is the continuum flow hypothesis which is 
considered here. Assuming incompressible, steady state 
flow, the microscopic equations become [7]: 

0. =∇ u
r

 (6) 

uPuu
rrr 2. ∇+−∇=∇ μρ   (7) 

where u
r

 is the pore scale velocity vector, ρ  and μ are 
the fluid density and viscosity, respectively . After 
volume averaging, Eq. (7) leads to Eq. (2) and in creeping 
flow limit, reduces to Eq. (1). Equation (2) is usually 
written in the following form [7]: 

2
DD U

K
FU

K
P ρμ

+=∇−  (8) 

where F is a dimensionless number called Forchheimer 
coefficient. An especial form of Eq. (6) is the Ergun 
equation: 

( ) ( ) 2
323

2 175.11150 DD U
d

U
d

P
ε

ε

ε

ε −
+

−
=∇−  (9) 

where ( )223 1150/ εε −= dK  and 2/3/14.0 ε=F . 
Ergun equation is based on a curve fit of experimental 
data collected for granular materials [7]. 

4 Experimental approach 
The permeability and inertial coefficient of three different 
1D tube banks with square arrangement were measured. 
Several water-glycerol mixtures with different mass 
concentrations were used to change the flow Reynolds 
number from 0.001 to 15. The properties and the 
measured coefficient of the tested samples are 
summarized in Table 1. 
A gravity driven test bed was custom-built. The test 
apparatus consisted of an elevated reservoir, an entry 
section, sample holder, and an exit section with a ball 
valve as schematically shown in Fig. 4. To test different 
samples, tube banks were interchangeable and could be 
inserted into the sample holder. The liquid level in the 

elevated reservoir tank was kept constant during the 
experiment to ensure a constant pressure head. The 
pressure drop across the samples was measured using a 
differential pressure transducer, PX-154 BEC Controls 
with %1 accuracy. To minimize entrance and exit effects 
on the pressure drop measurements, pressure taps were 
located far from the first and the last tube rows in the tube 
bank samples. The bulk flow was calculated using a 
precision scale by weighting the collected test fluid over a 
set period of time.  
 

Pressure 
transducer

Sam ple

Pressure taps

V alve

Scale

Tank

 
Figure 4: Schematic of the test setup. 

To obtain the permeability and the inertial coefficient 
from the measured pressure drop (dp/dx) and mass flow 
values, the volume averaged superficial velocity, DU , 
was calculated from the mass flow rate data and then 

( )dxdpU D //1 μ  was plotted versus μρ /DU . The y-

intercept and the slope of the data were then K/1  and 

KF / , respectively; see Eq. (8). Using equation (2), the 
inertial coefficient was found. From Fig.5, it can be seen 
that the measured pressure drops present a parabolic 
relationship with the volume-averaged velocity. 

5 Numerical procedure 
Equations (6) and (7) are solved using Fluent [42] which 
is a finite volume based software. The second order 
upwind scheme is selected to discretize the governing 
equations and SIMPLE algorithm [42] is employed for 
pressure-velocity coupling. The inlet and outlet 
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boundaries of the computational domains are considered 
to be periodic. The symmetry boundary condition is 
applied on the side borders of the considered unit cells; 
this means that normal velocity and gradient of parallel 
component of the velocity on the side borders are zero. 
Structured grids and unstructured grids are generated for 
1D/2D and 3D networks, respectively, using Gambit [41], 
the preprocessor in Fluent package.  

ρ U / μ
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P
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μ

U
)
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Figure 5: Measured values of ( )dxdpU D //1 μ  for the 

samples of tube bank with square fiber arrangement. 

Numerical grid aspect ratios are kept in the range of 1-5. 
Grid independence is tested for different cases and the 
size of the computational grids used for each geometry is 
selected such that the maximum difference in the 
predicted values for pressure gradient be less than 2%. 
The maximum number of grids used for 1D structures and 
2D/3D are approximately 14k and 1400k, respectively. It 
should be noted that the convergence criterion, maximum 
relative error in the value of dependent variables between 
two successive iterations, is set at 10-6. 
In the present study, numerical simulations are carried out 
for fibrous networks in the porosity range of 0.3 - 0.95 
and in the Reynolds number range of 0.001 – 200. With 
the exception of SC structures the other considered unit 
cells are anisotropic [8]; therefore, numerical simulations 
are conducted for flow parallel to different coordinate 
axes. The same method as described in the previous part 
is employed to determine the permeability and the 
inertial/Forchheimer coefficient from numerical results 

for different unit cells. The summary of the computed 
flow coefficients are reported in Table 2. 
Flow parallel to axes of square arrays of cylinders is 
similar to laminar channel flows. This leads to zero value 
for Forchheimer coefficient in parallel flow as reported in 
Table 1. Similarly, for 2D structures, the in-plane 
Forchheimer coefficients have lower values than the 
calculated values for through-plane flow. This is resulted 
from the fact that 50% of the fibers in the considered 
geometry are parallel to the flow for the case. Therefore, 
no inertial drag forces are exerted on these fibers. 

6 Comparison of the numerical results with 
existing data in the literature 

6.1 Square arrangement (1D)  
To verify the numerical analysis, in Fig. 6 the calculated 

values of the dimensionless normal permeability, 2/ dK , 
are successfully compared with present experimental 
results and the data collected from several sources [43-
48]. In addition, in Fig. 7 the calculated Forchheimer 
coefficients for square arrangements are compared with 
the present experimental data, the numerical results of 
Ghaddar [37] and Papatanasiou et al. [38] for 
monodisperse and bimodal fiber arrays, respectively. In 
addition, the experimental data of Berglin et al. [48] (oil 
flowing across tube banks) are included in Fig. 8. In 
general, the present results capture the trend and are in 
good agreement with the collected and reported data by 
others. 

6.2 2D and 3D simple cubic structures 
To the best knowledge of the authors, there are no 
experimental data for moderate Reynolds flow through 
the considered 2D and 3D structures in the open literature. 
To verify our analysis, in Fig. 8 the calculated 
permeability values for simple cubic arrangement are 
successfully compared with the numerical results of 
Higdon and Ford [30] and experimental data for actual 3D 
materials collected from different sources. The plotted 
data are based on permeability results for polymer chain 
in solutions [49], glass wool randomly packed, stainless 
steel crimps [20, 50], metallic fibers [51], and aluminum 
metal foams [27,52]. 

Table 1: Summary of the properties of the tested samples; water-glycol used as test fluid. 

Sample type ε  d  
( mm ) 

Orientation )( 2mK  )( 1−mβ  F  

Tube bank (square) 0.8 1.5 1D 1.38×10-7 75 0.028 
Tube bank (square) 0.85 1.5 1D 3.74×10-7 35.8 0.022 
Tube bank (square) 0.9 1.5 1D 5.44×10-7 26.7 0.020 
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Table 2: Flow properties for the considered fibrous 
structures. 

Square array (1D) 

Normal flow Parallel flow 

ε  2/ dK  F  ε  2/ dK  F  

0.45 0.0015 0.189 0.45 0.0079 0 

0.65 0.014 0.032 0.55 0.0177 0 

0.8 0.072 0.020 0.65 0.0378 0 

0.9 0.300 0.011 0.8 0.1667 0 

0.95 0.892 0.010 0.9 0.643 0 

Planar structures (2D) 

Through plane flow In-plane flow 

ε  2/ dK  F  ε  2/ dK  F  

0.35 0.0007 0.313 0.35 0.0016 0.092 

0.5 0.0046 0.118 0.5 0.0069 0.046 

0.6 0.012 0.091 0.6 0.0164 0.033 

0.8 0.106 0.033 0.8 0.0807 0.018 

0.9 0.439 0.0028 0.9 0.4119 0.013 

Simple cubic (3D) 

ε  2/ dK  F  

0.31 0.0011 0.914 

0.37 0.0023 0.562 

0.59 0.0174 0.141 

0.79 0.118 0.041 

0.87 0.336 0.024 

7 Effects of fiber orientation on flow properties 
Effects of microstructure and more specifically fibers 
orientation on permeability and Forchheimer coefficient 
are investigated in Figs. 9 and 10, respectively. As 
expected, 1D arrangements are the most anisotropic 
geometry and the normal and parallel permeability of 
such structures provide the lower and upper bounds for 
permeability of fibrous media. Effects of microstructure 
are more pronounced in lower porosities. 
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Figure 6: Comparison between the present numerical 
results, collected experimental results, and data from 
various sources, for normal flow through square fiber 

arrays. 
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Figure 7: Comparison between the present numerical and 

experimental results for Forchheimer coefficient with 
experimental and numerical data of others. 
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Figure 8: Comparison between the present numerical 

results for permeability of simple cubic arrangements with 
existing numerical and experimental data of 3D materials. 
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The plotted data in Fig. 9 indicates that 1D and 2D 
geometries are anisotropic and the Forchheimer 
coefficient for 3D structures is higher than values for 1D 
and 2D geometries. The Forchheimer coefficient is a 
reflection of inertial effects. Thus, it is more influenced by 
microstrucutre in lower porosities, i.e., ε  < 0.7. 

8 Comparison with the Ergun equation 
Ergun equation, Eq. (9), is a widely accepted equation for 
prediction of pressure drop across granular materials. Two 
main differences between fibrous and granular materials 
are: 

1) Shape of the particles in granular materials are 
spherical while fibrous media are made up of 
cylindrical like particles. 

2) Porosity of granular materials are in the range of 
0.2 – 0.6, where fibrous materials usually have 
higher porosities, 0.6 < ε  < 0.999. 

The present numerical results are compared with the 
values predicted by the Ergun equation to figure out if this 
equation is applicable to high porosity fibrous structures. 
Figure 9 includes the predicted values of permeability 
from Ergun equation and present numerical results. It can 
be seen that the Ergun equation can only predict trends of 
numerical data qualitatively and the differences are 
significant especially in low porosities. The Forchheimer 
results calculated from the Ergun equation are plotted 
against the current numerical results in Fig. 10. The 
comparison shows that the Ergun equation is only in 
agreement with numerical results for isotropic 3D 
materials with low porosities. For higher porosities Eq. 
(9) is incapable of predicting pressure drop for fibrous 
media. 
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Figure 9: Comparison of numerical values of 

dimensionless permeability of fibrous media with Ergun 
equation. 
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Figure 10: Comparison of numerical values of 

Forchheimer coefficient of fibrous media with Ergun 
equation. 

8 Correlations for Forchheimer coefficient 
Our analysis showed that the Ergun equation is not 
accurate for prediction of the permeability and the 
Forchheimer coefficient of fibrous porous materials. 
Creeping flow through fibrous media has been 
investigated by various research groups and several 
models exist for calculating the permeability. However, 
only few studies have been performed to investigate the 
inertial flow regime in fibrous porous media.  
Using our numerical results, a series of compact 
correlations are developed for 1D, 2D, and 3D fibrous 
structures and are listed in Table 3. The proposed 
correlations are accurate within 2% of the present 
numerical results. 

Table 3: Proposed correlations for Forchheimer 
coefficient in fibrous media. 

Flow direction/microstructure ( ) cbaF /1−+= ε  

a b c 
Normal/square arrays (1D) -3.491 12.51 0.456 

Through plane- 2D structures -0.14 5.05 0.418 
In-plane/2D structures 1.037 0.0863 0.025 

Simple cubic arrangements 
(3D) 

0.534 1.56 0.184 

9 Conclusions 
The effects of porosity and fiber orientation on the 
viscous permeability and the Forchheimer coefficient of 
mono-dispersed fibers were investigated. Fibrous porous 
materials were classified into three main categories: 1D, 
2D, and 3D structures. Using a unit-cell approach, the 
flow through the considered geometries (1D, 2D, and 3D) 
were solved numerically over a wide range of Reynolds 
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number, 0.01 < Re  < 200. The results were then used to 
calculate permeability and the inertial coefficient of the 
solid matrices. 
An experimental study was undertaken. The permeability 
and the inertial coefficient in three samples of 1D tube 
banks with square arrangement were measured over a 
range of the Reynolds number. The present numerically 
computed permeabilities were successfully compared with 
the present experimental results and the data collected 
from various sources. The results suggested that both 
permeability and Forchheimer coefficients were functions 
of porosity and fiber orientation. In addition, a 
comparison of the numerical results with Ergun equation 
reveals that this equation was not accurate for highly 
porous materials. From the numerical study, new compact 
accurate correlations were proposed for determining the 
Forchheimer coefficient in fibrous media. 
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